Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Ambient Intell Humaniz Comput ; : 1-23, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-20234455

ABSTRACT

Millions of people use public transport systems daily, hence their interest for the epidemiology of respiratory infectious diseases, both from a scientific and a health control point of view. This article presents a methodology for obtaining epidemiological information on these types of diseases in the context of a public road transport system. This epidemiological information is based on an estimation of interactions with risk of infection between users of the public transport system. The methodology is novel in its aim since, to the best of our knowledge, there is no previous study in the context of epidemiology and public transport systems that addresses this challenge. The information is obtained by mining the data generated from trips made by transport users who use contactless cards as a means of payment. Data mining therefore underpins the methodology. One achievement of the methodology is that it is a comprehensive approach, since, starting from a formalisation of the problem based on epidemiological concepts and the transport activity itself, all the necessary steps to obtain the required epidemiological knowledge are described and implemented. This includes the estimation of data that are generally unknown in the context of public transport systems, but that are required to generate the desired results. The outcome is useful epidemiological data based on a complete and reliable description of all estimated potentially infectious interactions between users of the transport system. The methodology can be implemented using a variety of initial specifications: epidemiological, temporal, geographic, inter alia. Another feature of the methodology is that with the information it provides, epidemiological studies can be carried out involving a large number of people, producing large samples of interactions obtained over long periods of time, thereby making it possible to carry out comparative studies. Moreover, a real use case is described, in which the methodology is applied to a road transport system that annually moves around 20 million passengers, in a period that predates the COVID-19 pandemic. The results have made it possible to identify the group of users most exposed to infection, although they are not the largest group. Finally, it is estimated that the application of a seat allocation strategy that minimises the risk of infection reduces the risk by 50%.

2.
Epidemics ; 43: 100688, 2023 06.
Article in English | MEDLINE | ID: covidwho-2322996

ABSTRACT

We survey 62 users of a university asymptomatic SARS-CoV-2 testing service on details of their activities, protective behaviours and contacts in the 7 days prior to receiving a positive or negative SARS-CoV-2 PCR test result in the period October 2020-March 2021. The resulting data set is novel in capturing very detailed social contact history linked to asymptomatic disease status during a period of significant restriction on social activities. We use this data to explore 3 questions: (i) Did participation in university activities enhance infection risk? (ii) How do contact definitions rank in their ability to explain test outcome during periods of social restrictions? (iii) Do patterns in the protective behaviours help explain discrepancies between the explanatory performance of different contact measures? We classify activities into settings and use Bayesian logistic regression to model test outcome, computing posterior model probabilities to compare the performance of models adopting different contact definitions. Associations between protective behaviours, participant characteristics and setting are explored at the level of individual activities using multiple correspondence analysis (MCA). We find that participation in air travel or non-university work activities was associated with a positive asymptomatic SARS-CoV-2 PCR test, in contrast to participation in research and teaching settings. Intriguingly, logistic regression models with binary measures of contact in a setting performed better than more traditional contact numbers or person contact hours (PCH). The MCA indicates that patterns of protective behaviours vary between setting, in a manner which may help explain the preference for any participation as a contact measure. We conclude that linked PCR testing and social contact data can in principle be used to test the utility of contact definitions, and the investigation of contact definitions in larger linked studies is warranted to ensure contact data can capture environmental and social factors influencing transmission risk.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , COVID-19 Testing , Bayes Theorem , United Kingdom/epidemiology
3.
BMC Public Health ; 23(1): 906, 2023 05 19.
Article in English | MEDLINE | ID: covidwho-2326692

ABSTRACT

BACKGROUND: Most countries around the world enforced non-pharmaceutical interventions against COVID-19. Italy was one of the first countries to be affected by the pandemic, imposing a hard lockdown, in the first epidemic wave. During the second wave, the country implemented progressively restrictive tiers at the regional level according to weekly epidemiological risk assessments. This paper quantifies the impact of these restrictions on contacts and on the reproduction number. METHODS: Representative (with respect to age, sex, and region of residence) longitudinal surveys of the Italian population were undertaken during the second epidemic wave. Epidemiologically relevant contact patterns were measured and compared with pre-pandemic levels and according to the level of interventions experienced by the participants. Contact matrices were used to quantify the reduction in the number of contacts by age group and contact setting. The reproduction number was estimated to evaluate the impact of restrictions on the spread of COVID-19. RESULTS: The comparison with the pre-pandemic baseline shows a significant decrease in the number of contacts, independently from the age group or contact settings. This decrease in the number of contacts significantly depends on the strictness of the non-pharmaceutical interventions. For all levels of strictness considered, the reduction in social mixing results in a reproduction number smaller than one. In particular, the impact of the restriction on the number of contacts decreases with the severity of the interventions. CONCLUSIONS: The progressive restriction tiers implemented in Italy reduced the reproduction number, with stricter interventions associated with higher reductions. Readily collected contact data can inform the implementation of mitigation measures at the national level in epidemic emergencies to come.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Communicable Disease Control/methods , Pandemics/prevention & control , Italy/epidemiology
4.
Math Med Biol ; 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2278315

ABSTRACT

In this article, we investigate the importance of demography and contact patterns in determining the spread of COVID-19 and to the effectiveness of social distancing policies. We investigate these questions proposing an augmented epidemiological model with an age-structured model, with the population divided into susceptible (S), exposed (E), asymptomatic infectious (A), hospitalized (H), symptomatic infectious (I) and recovered individuals (R), to simulate COVID-19 dissemination. The simulations were carried out using six combinations of four types of isolation policies (work restrictions, isolation of the elderly, community distancing and school closures) and four representative fictitious countries generated over alternative demographic transition stage patterns (aged developed, developed, developing and least developed countries). We concluded that the basic reproduction number depends on the age profile and the contact patterns. The aged developed country had the lowest basic reproduction number ($R0=1.74$) due to the low contact rate among individuals, followed by the least developed country ($R0=2.00$), the developing country ($R0=2.43$) and the developed country ($R0=2.64$). Because of these differences in the basic reproduction numbers, the same intervention policies had higher efficiencies in the aged and least developed countries. Of all intervention policies, the reduction in work contacts and community distancing were the ones that produced the highest decrease in the $R0$ value, prevalence, maximum hospitalization demand and fatality rate. The isolation of the elderly was more effective in the developed and aged developed countries. The school closure was the less effective intervention policy, though its effects were not negligible in the least developed and developing countries.

5.
Int J Environ Res Public Health ; 19(19)2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2065917

ABSTRACT

Cultural practices and development level can influence a population's household structures and mixing patterns. Within some populations, households can be organized across multiple dwellings. This likely affects the spread of infectious disease through these communities; however, current demographic data collection tools do not record these data. METHODS: Between June and October 2018, the Contact And Mobility Patterns in remote Aboriginal Australian communities (CAMP-remote) pilot study recruited Aboriginal mothers with infants in a remote northern Australian community to complete a monthly iPad-based contact survey. RESULTS: Thirteen mother-infant pairs (participants) completed 69 study visits between recruitment and the end of May 2019. Participants reported they and their other children slept in 28 dwellings during the study. The median dwelling occupancy, defined as people sleeping in the same dwelling on the previous night, was ten (range: 3.5-25). Participants who completed at least three responses (n = 8) slept in a median of three dwellings (range: 2-9). Each month, a median of 28% (range: 0-63%) of the participants travelled out of the community. Including these data in disease transmission models amplified estimates of infectious disease spread in the study community, compared to models parameterized using census data. CONCLUSIONS: The lack of data on mixing patterns in populations where households can be organized across dwellings may impact the accuracy of infectious disease models for these communities and the efficacy of public health actions they inform.


Subject(s)
Family Characteristics , Native Hawaiian or Other Pacific Islander , Australia/epidemiology , Child , Female , Humans , Indigenous Peoples , Infant , Pilot Projects
6.
Transportation Amid Pandemics ; : 201-223, 2023.
Article in English | ScienceDirect | ID: covidwho-2041432

ABSTRACT

Social contacts are an important indicator to track the spread of pandemics and evaluate the effectiveness of policy interventions in specific settings. Using a retrospective survey, this chapter compared the reported contact patterns during the COVID-19 outbreak to contact patterns during the influenza period in leisure/tourism settings of four developed countries. Changes in social contact patterns across demographic and other factors at different locations and regions are identified, which are helpful for classifying the heterogeneity of contact patterns and potential post-lockdown transmission patterns. This analysis can assist policymakers to implement more evidence-based interventions to guide the economic recovery of the tourism sector.

7.
BMC Infect Dis ; 22(1): 483, 2022 May 21.
Article in English | MEDLINE | ID: covidwho-1902359

ABSTRACT

BACKGROUND: Contact patterns play a key role in the spread of respiratory infectious diseases in human populations. During the COVID-19 pandemic, the regular contact patterns of the population have been disrupted due to social distancing both imposed by the authorities and individual choices. Many studies have focused on age-mixing patterns before the COVID-19 pandemic, but they provide very little information about the mixing patterns in the COVID-19 era. In this study, we aim at quantifying human heterogeneous mixing patterns immediately after lockdowns implemented to contain COVID-19 spread in China were lifted. We also provide an illustrative example of how the collected mixing patterns can be used in a simulation study of SARS-CoV-2 transmission. METHODS AND RESULTS: In this work, a contact survey was conducted in Chinese provinces outside Hubei in March 2020, right after lockdowns were lifted. We then leveraged the estimated mixing patterns to calibrate a mathematical model of SARS-CoV-2 transmission. Study participants reported 2.3 contacts per day (IQR: 1.0-3.0) and the mean per-contact duration was 7.0 h (IQR: 1.0-10.0). No significant differences in average contact number and contact duration were observed between provinces, the number of recorded contacts did not show a clear trend by age, and most of the recorded contacts occurred with family members (about 78%). The simulation study highlights the importance of considering age-specific contact patterns to estimate the COVID-19 burden. CONCLUSIONS: Our findings suggest that, despite lockdowns were no longer in place at the time of the survey, people were still heavily limiting their contacts as compared to the pre-pandemic situation.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Communicable Disease Control , Humans , Pandemics , Physical Distancing
8.
BMC Infect Dis ; 22(1): 493, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1865282

ABSTRACT

BACKGROUND: Understanding the characteristics and natural history of novel pathogens is crucial to inform successful control measures. Japan was one of the first affected countries in the COVID-19 pandemic reporting their first case on 14 January 2020. Interventions including airport screening, contact tracing, and cluster investigations were quickly implemented. Here we present insights from the first 3 months of the epidemic in Japan based on detailed case data. METHODS: We conducted descriptive analyses based on information systematically extracted from individual case reports from 13 January to 31 March 2020 including patient demographics, date of report and symptom onset, symptom progression, travel history, and contact type. We analysed symptom progression and estimated the time-varying reproduction number, Rt, correcting for epidemic growth using an established Bayesian framework. Key delays and the age-specific probability of transmission were estimated using data on exposures and transmission pairs. RESULTS: The corrected fitted mean onset-to-reporting delay after the peak was 4 days (standard deviation: ± 2 days). Early transmission was driven primarily by returning travellers with Rt peaking at 2.4 (95% CrI: 1.6, 3.3) nationally. In the final week of the trusted period (16-23 March 2020), Rt accounting for importations diverged from overall Rt at 1.1 (95% CrI: 1.0, 1.2) compared to 1.5 (95% CrI: 1.3, 1.6), respectively. Household (39.0%) and workplace (11.6%) exposures were the most frequently reported potential source of infection. The estimated probability of transmission was assortative by age with individuals more likely to infect, and be infected by, contacts in a similar age group to them. Across all age groups, cases most frequently onset with cough, fever, and fatigue. There were no reported cases of patients < 20 years old developing pneumonia or severe respiratory symptoms. CONCLUSIONS: Information collected in the early phases of an outbreak are important in characterising any novel pathogen. The availability of timely and detailed data and appropriate analyses is critical to estimate and understand a pathogen's transmissibility, high-risk settings for transmission, and key symptoms. These insights can help to inform urgent response strategies.


Subject(s)
COVID-19 , Adult , Bayes Theorem , COVID-19/epidemiology , Humans , Japan/epidemiology , Pandemics/prevention & control , SARS-CoV-2 , Young Adult
9.
MethodsX ; 9: 101614, 2022.
Article in English | MEDLINE | ID: covidwho-1796315

ABSTRACT

Infectious disease transmission models often stratify populations by age and geographic patches. Contact patterns between age groups and patches are key parameters in such models. Arenas et al. (2020) develop an approach to simulate contact patterns associated with recurrent mobility between patches, such as due to work, school, and other regular travel. Using their approach, mixing between patches is greater than mobility data alone would suggest, because individuals from patches A and B can form contacts if they meet in patch C. We build upon their approach to address three potential gaps that remain, outlined in the bullets below. We describe the steps required to implement our approach in detail, and present step-wise results of an example application to generate contact matrices for SARS-CoV-2 transmission modelling in Ontario, Canada. We also provide methods for deriving the mobility matrix based on GPS mobility data (appendix).•Our approach includes a distribution of contacts by age that is responsive to the underlying age distributions of the mixing populations.•Our approach maintains different age mixing patterns by contact type, such that changes to the numbers of different types of contacts are appropriately reflected in changes to overall age mixing patterns.•Our approach distinguishes between two mixing pools associated with each patch, with possible implications for the overall connectivity of the population: the home pool, in which contacts can only be formed with other individuals residing in the same patch, and the travel pool, in which contacts can be formed with some residents of, and any other visitors to the patch.

10.
Elife ; 102021 11 25.
Article in English | MEDLINE | ID: covidwho-1534521

ABSTRACT

Background: Transmission of respiratory pathogens such as SARS-CoV-2 depends on patterns of contact and mixing across populations. Understanding this is crucial to predict pathogen spread and the effectiveness of control efforts. Most analyses of contact patterns to date have focused on high-income settings. Methods: Here, we conduct a systematic review and individual-participant meta-analysis of surveys carried out in low- and middle-income countries and compare patterns of contact in these settings to surveys previously carried out in high-income countries. Using individual-level data from 28,503 participants and 413,069 contacts across 27 surveys, we explored how contact characteristics (number, location, duration, and whether physical) vary across income settings. Results: Contact rates declined with age in high- and upper-middle-income settings, but not in low-income settings, where adults aged 65+ made similar numbers of contacts as younger individuals and mixed with all age groups. Across all settings, increasing household size was a key determinant of contact frequency and characteristics, with low-income settings characterised by the largest, most intergenerational households. A higher proportion of contacts were made at home in low-income settings, and work/school contacts were more frequent in high-income strata. We also observed contrasting effects of gender across income strata on the frequency, duration, and type of contacts individuals made. Conclusions: These differences in contact patterns between settings have material consequences for both spread of respiratory pathogens and the effectiveness of different non-pharmaceutical interventions. Funding: This work is primarily being funded by joint Centre funding from the UK Medical Research Council and DFID (MR/R015600/1).


Infectious diseases, particularly those caused by airborne pathogens like SARS-CoV-2, spread by social contact, and understanding how people mix is critical in controlling outbreaks. To explore these patterns, researchers typically carry out large contact surveys. Participants are asked for personal information (such as gender, age and occupation), as well as details of recent social contacts, usually those that happened in the last 24 hours. This information includes, the age and gender of the contact, where the interaction happened, how long it lasted, and whether it involved physical touch. These kinds of surveys help scientists to predict how infectious diseases might spread. But there is a problem: most of the data come from high-income countries, and there is evidence to suggest that social contact patterns differ between places. Therefore, data from these countries might not be useful for predicting how infections spread in lower-income regions. Here, Mousa et al. have collected and combined data from 27 contact surveys carried out before the COVID-19 pandemic to see how baseline social interactions vary between high- and lower-income settings. The comparison revealed that, in higher-income countries, the number of daily contacts people made decreased with age. But, in lower-income countries, younger and older individuals made similar numbers of contacts and mixed with all age groups. In higher-income countries, more contacts happened at work or school, while in low-income settings, more interactions happened at home and people were also more likely to live in larger, intergenerational households. Mousa et al. also found that gender affected how long contacts lasted and whether they involved physical contact, both of which are key risk factors for transmitting airborne pathogens. These findings can help researchers to predict how infectious diseases might spread in different settings. They can also be used to assess how effective non-medical restrictions, like shielding of the elderly and workplace closures, will be at reducing transmissions in different parts of the world.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious , Adolescent , Adult , Aged , COVID-19/virology , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Young Adult
11.
BMC Public Health ; 21(1): 2040, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1505694

ABSTRACT

BACKGROUND: A variety of public health measures have been implemented during the COVID-19 pandemic in Canada to reduce contact between individuals. The objective of this study was to provide empirical contact pattern data to evaluate the impact of public health measures, the degree to which social contacts rebounded to normal levels, as well as direct public health efforts toward age- and location-specific settings. METHODS: Four population-based cross-sectional surveys were administered to members of a paid panel representative of Canadian adults by age, gender, official language, and region of residence during May (Survey 1), July (Survey 2), September (Survey 3), and December (Survey 4) 2020. A total of 4981 (Survey 1), 2493 (Survey 2), 2495 (Survey 3), and 2491 (Survey 4) respondents provided information about the age and setting for each direct contact made in a 24-h period. Contact matrices were constructed and contacts for those under the age of 18 years imputed. The next generation matrix approach was used to estimate the reproduction number (Rt) for each survey. Respondents with children under 18 years estimated the number of contacts their children made in school and extracurricular settings. RESULTS: Estimated Rt values were 0.49 (95% CI: 0.29-0.69) for May, 0.48 (95% CI: 0.29-0.68) for July, 1.06 (95% CI: 0.63-1.52) for September, and 0.81 (0.47-1.17) for December. The highest proportion of reported contacts occurred within the home (51.3% in May), in 'other' locations (49.2% in July) and at work (66.3 and 65.4% in September and December). Respondents with children reported an average of 22.7 (95% CI: 21.1-24.3) (September) and 19.0 (95% CI 17.7-20.4) (December) contacts at school per day per child in attendance. CONCLUSION: The skewed distribution of reported contacts toward workplace settings in September and December combined with the number of reported school-related contacts suggest that these settings represent important opportunities for transmission emphasizing the need to support and ensure infection control procedures in both workplaces and schools.


Subject(s)
COVID-19 , Pandemics , Adolescent , Adult , Canada/epidemiology , Child , Cross-Sectional Studies , Humans , Public Health , SARS-CoV-2
12.
Wellcome Open Res ; 5: 278, 2020.
Article in English | MEDLINE | ID: covidwho-1485514

ABSTRACT

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective population-based cohort study which recruited pregnant women in 1990-1992 from the Bristol area (UK). ALSPAC has followed these women, their partners (Generation 0; G0) and their offspring (Generation 1; G1) ever since. From 2012, ALSPAC has identified G1 participants who were pregnant (or their partner was) or had become parents, and enrolled them, their partners, and children in the ALSPAC-Generation 2 (ALSPAC-G2) study, providing a unique multi-generational cohort. At present, approximately 1,100 G2 children (excluding those in utero) from 810 G1 participants have been enrolled. In response to the COVID-19 pandemic, ALSPAC rapidly deployed two online questionnaires; one during the initial lockdown phase in 2020 (9 th April-15 th May), and another when national lockdown restrictions were eased (26 th May-5 th July). As part of this second questionnaire, G1 parents completed a questionnaire about each of their G2 children. This covered: parental reports of children's feelings and behaviour since lockdown, school attendance, contact patterns, and health. A total of 289 G1 participants completed this questionnaire on behalf of 411 G2 children. This COVID-19 G2 questionnaire data can be combined with pre-pandemic ALSPAC-G2 data, plus ALSPAC-G1 and -G0 data, to understand how children's health and behaviour has been affected by the pandemic and its management. Data from this questionnaire will be complemented with linkage to health records and results of biological testing as they become available. Prospective studies are necessary to understand the impact of this pandemic on children's health and development, yet few relevant studies exist; this resource will aid these efforts. Data has been released as: 1) a freely-available dataset containing participant responses with key sociodemographic variables; and 2) an ALSPAC-held dataset which can be combined with existing ALSPAC data, enabling bespoke research across all areas supported by the study.

13.
BMC Med ; 19(1): 271, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1468065

ABSTRACT

BACKGROUND: The effect of contact reduction measures on infectious disease transmission can only be assessed indirectly and with considerable delay. However, individual social contact data and population mobility data can offer near real-time proxy information. The aim of this study is to compare social contact data and population mobility data with respect to their ability to reflect transmission dynamics during the first wave of the SARS-CoV-2 pandemic in Germany. METHODS: We quantified the change in social contact patterns derived from self-reported contact survey data collected by the German COVIMOD study from 04/2020 to 06/2020 (compared to the pre-pandemic period from previous studies) and estimated the percentage mean reduction over time. We compared these results as well as the percentage mean reduction in population mobility data (corrected for pre-pandemic mobility) with and without the introduction of scaling factors and specific weights for different types of contacts and mobility to the relative reduction in transmission dynamics measured by changes in R values provided by the German Public Health Institute. RESULTS: We observed the largest reduction in social contacts (90%, compared to pre-pandemic data) in late April corresponding to the strictest contact reduction measures. Thereafter, the reduction in contacts dropped continuously to a minimum of 73% in late June. Relative reduction of infection dynamics derived from contact survey data underestimated the one based on reported R values in the time of strictest contact reduction measures but reflected it well thereafter. Relative reduction of infection dynamics derived from mobility data overestimated the one based on reported R values considerably throughout the study. After the introduction of a scaling factor, specific weights for different types of contacts and mobility reduced the mean absolute percentage error considerably; in all analyses, estimates based on contact data reflected measured R values better than those based on mobility. CONCLUSIONS: Contact survey data reflected infection dynamics better than population mobility data, indicating that both data sources cover different dimensions of infection dynamics. The use of contact type-specific weights reduced the mean absolute percentage errors to less than 1%. Measuring the changes in mobility alone is not sufficient for understanding the changes in transmission dynamics triggered by public health measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Germany/epidemiology , Humans , Pandemics , Surveys and Questionnaires
14.
Epidemics ; 37: 100490, 2021 12.
Article in English | MEDLINE | ID: covidwho-1372994

ABSTRACT

Following the spread of the COVID-19 pandemic and pending the establishment of vaccination campaigns, several non pharmaceutical interventions such as partial and full lockdown, quarantine and measures of physical distancing have been imposed in order to reduce the spread of the disease and to lift the pressure on healthcare system. Mathematical models are important tools for estimating the impact of these interventions, for monitoring the current evolution of the epidemic at a national level and for estimating the potential long-term consequences of relaxation of measures. In this paper, we model the evolution of the COVID-19 epidemic in Belgium with a deterministic age-structured extended compartmental model. Our model takes special consideration for nursing homes which are modelled as separate entities from the general population in order to capture the specific delay and dynamics within these entities. The model integrates social contact data and is fitted on hospitalisations data (admission and discharge), on the daily number of COVID-19 deaths (with a distinction between general population and nursing home related deaths) and results from serological studies, with a sensitivity analysis based on a Bayesian approach. We present the situation as in November 2020 with the estimation of some characteristics of the COVID-19 deduced from the model. We also present several mid-term and long-term projections based on scenarios of reinforcement or relaxation of social contacts for different general sectors, with a lot of uncertainties remaining.


Subject(s)
COVID-19 , Bayes Theorem , Belgium/epidemiology , Communicable Disease Control , Epidemiological Models , Humans , Nursing Homes , Pandemics , SARS-CoV-2
15.
Epidemics ; 36: 100481, 2021 09.
Article in English | MEDLINE | ID: covidwho-1272411

ABSTRACT

We measured contact patterns using online diaries for 304 employees of 3 U.S. companies working remotely. The median number of daily contacts was 2 (IQR 1-4); majority were conversation (55 %), occurred at home (64 %) and lasted >4 h (38 %). These data are crucial for modeling outbreak control among the workforces.


Subject(s)
COVID-19 , Pandemics , Disease Outbreaks , Humans , SARS-CoV-2
16.
EClinicalMedicine ; 22: 100354, 2020 May.
Article in English | MEDLINE | ID: covidwho-72299

ABSTRACT

BACKGROUND: COVID-19 has spread to 6 continents. Now is opportune to gain a deeper understanding of what may have happened. The findings can help inform mitigation strategies in the disease-affected countries. METHODS: In this work, we examine an essential factor that characterizes the disease transmission patterns: the interactions among people. We develop a computational model to reveal the interactions in terms of the social contact patterns among the population of different age-groups. We divide a city's population into seven age-groups: 0-6 years old (children); 7-14 (primary and junior high school students); 15-17 (high school students); 18-22 (university students); 23-44 (young/middle-aged people); 45-64 years old (middle-aged/elderly people); and 65 or above (elderly people). We consider four representative settings of social contacts that may cause the disease spread: (1) individual households; (2) schools, including primary/high schools as well as colleges and universities; (3) various physical workplaces; and (4) public places and communities where people can gather, such as stadiums, markets, squares, and organized tours. A contact matrix is computed to describe the contact intensity between different age-groups in each of the four settings. By integrating the four contact matrices with the next-generation matrix, we quantitatively characterize the underlying transmission patterns of COVID-19 among different populations. FINDINGS: We focus our study on 6 representative cities in China: Wuhan, the epicenter of COVID-19 in China, together with Beijing, Tianjin, Hangzhou, Suzhou, and Shenzhen, which are five major cities from three key economic zones. The results show that the social contact-based analysis can readily explain the underlying disease transmission patterns as well as the associated risks (including both confirmed and unconfirmed cases). In Wuhan, the age-groups involving relatively intensive contacts in households and public/communities are dispersedly distributed. This can explain why the transmission of COVID-19 in the early stage mainly took place in public places and families in Wuhan. We estimate that Feb. 11, 2020 was the date with the highest transmission risk in Wuhan, which is consistent with the actual peak period of the reported case number (Feb. 4-14). Moreover, the surge in the number of new cases reported on Feb. 12 and 13 in Wuhan can readily be captured using our model, showing its ability in forecasting the potential/unconfirmed cases. We further estimate the disease transmission risks associated with different work resumption plans in these cities after the outbreak. The estimation results are consistent with the actual situations in the cities with relatively lenient policies, such as Beijing, and those with strict policies, such as Shenzhen. INTERPRETATION: With an in-depth characterization of age-specific social contact-based transmission, the retrospective and prospective situations of the disease outbreak, including the past and future transmission risks, the effectiveness of different interventions, and the disease transmission risks of restoring normal social activities, are computationally analyzed and reasonably explained. The conclusions drawn from the study not only provide a comprehensive explanation of the underlying COVID-19 transmission patterns in China, but more importantly, offer the social contact-based risk analysis methods that can readily be applied to guide intervention planning and operational responses in other countries, so that the impact of COVID-19 pandemic can be strategically mitigated. FUNDING: General Research Fund of the Hong Kong Research Grants Council; Key Project Grants of the National Natural Science Foundation of China.

SELECTION OF CITATIONS
SEARCH DETAIL